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Abstract—Visual reranking has been proven effective to refine
text-based video and image search results. It utilizes visual infor-
mation to recover “true” ranking list from the noisy one generated
by text-based search, by incorporating both textual and visual
information. In this paper, we model the textual and visual infor-
mation from the probabilistic perspective and formulate visual
reranking as an optimization problem in the Bayesian framework,
termed Bayesian visual reranking. In this method, the textual
information is modeled as a likelihood, to reflect the disagreement
between reranked results and text-based search results which
is called ranking distance. The visual information is modeled
as a conditional prior, to indicate the ranking score consistency
among visually similar samples which is called visual consistency.
Bayesian visual reranking derives the best reranking results by
maximizing visual consistency while minimizing ranking distance.
To model the ranking distance more precisely, we propose a novel
pair-wise method which measure the ranking distance based on
the disagreement in terms of pair-wise orders. For visual consis-
tency, we study three different regularizers to mine the best way
for its modeling. We conduct extensive experiments on both video
and image search datasets. Experimental results demonstrate the
effectiveness of our proposed Bayesian visual reranking.

Index Terms—Image search, ranking distance, video search, vi-
sual consistency, visual reranking.

I. INTRODUCTION

M OST of the frequently-employed video/image search
engines are implemented for “query by keyword”

scenario. They are built by indexing and searching the asso-
ciated textual information of images, e.g., surrounding texts,
speech transcripts, closed captions, titles, URLs, etc. Due to
the mismatch between videos/images and their associated
textual descriptions, the performance of text-based video/image
search is yet unsatisfactory. Moreover, the performance of the
state-of-the-art techniques for automatic speech recognition
(ASR), video text detection, and machine translation (MT) is
still far from satisfactory for practical applications. Besides, the
textual information cannot describe the video/image’s rich con-
tent comprehensively and substantially. As a consequence, the
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essential visual information should be considered to improve
the search performances. However, it has been acknowledged
that pure content-based approaches [1] cannot work well, due
to the semantic gap [2] between the low level visual features
and the high level semantic concepts.

Visual reranking has been proposed in recent years. It is an
integrated framework that aims to efficiently obtain effective
search results. A list of text-based search results is first returned
by using textual information only for efficiency. Then visual in-
formation is applied to reorder the initial result for refinement.
Fig. 1 shows a typical process of visual reranking. As illustrated
in Fig. 1(a), after a query “Panda” is submitted, an initial re-
sult is obtained via a text-based search engine. It is observed
that text-based search often returns “inconsistent” results. Some
visually similar images (semantically close meanwhile in most
cases) are scattered in the result, and frequently some irrelevant
results are filled between them. For instance, in Fig. 1(a), rel-
evant images 1, 2, 4, 6, 7, and 9 are all visually similar while
irrelevant images 3, 5, and 8 are dissimilar from them. It is rea-
sonably assumed that visually similar samples should be ranked
together. This is also coherent with human perception. Such a
visual consistency pattern within relevant samples can be uti-
lized to refine the initial ranking list. For example, irrelevant
images 3, 5, and 8 will be demoted while the other relevant im-
ages are promoted to the front. A more satisfactory result will
be obtained, as shown in Fig. 1(b). Such a process of reordering
the initial ranking list based on visual patterns is called con-
tent-based video/image search reranking, or visual reranking in
brief.

Visual reranking incorporates both textual and visual cues.
As for textual cues, we mean that the text-based search result
provides a good baseline for the “true” ranking list. Though
noisy, the text-based search result still reflects partial facts of the
“true” list and thus needs to be preserved to some extent. In other
words, we should keep the correct information in it. The visual
cues are introduced by taking visual consistency as a constraint
that visually similar samples should be ranked closely and vice
versa. Reranking is actually a trade-off between the two cues. It
is worth emphasizing that this is actually the basic underlying
assumption in many reranking methods [3]–[5], though not ex-
plicitly stated.

In this paper, we model textual and visual cues from the prob-
abilistic perspective within Bayesian framework. The textual
cues are modeled as a likelihood to reflect the correlation be-
tween the reranked list and the initial one. The visual cues are
modeled as a conditional prior to indicate the ranking score con-
sistency within visually similar samples. In the Bayesian frame-
work, reranking is formulated as maximizing the product of the
conditional prior and the likelihood, so-called Bayesian visual
reranking.

1520-9210/$26.00 © 2011 IEEE
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Fig. 1. Illustration of visual reranking. Firstly the text-based search engine returns the images/video shots related to the query “Panda” from textual cues and then
the reranking process is applied to refine this result by mining visual information (visual cues). (a) and (b) show the top-9 ranked images in the text-based search
results and the reranked results, respectively.

A. Conditional Prior—Visual Consistency Regularizer

This paper models the conditional prior via a regularizer term.
The widely used Laplacian and normalized Laplacian regular-
izers in the machine learning field can be directly used. How-
ever, both of them measure the visual consistency pair-wisely.
Specifically, for each sample, a set of pairs is formed between
it and each of its visually similar neighbors. The overall con-
sistency is measured by aggregating the individual consistency
over each pair. The consistency on a local area is multiple-wise
instead of pair-wise since it is a term defined over the whole
neighboring samples instead of over each sample pair. There-
fore, the consistency approximated via pair-wise regularizers is
not satisfactory enough.

A local learning regularizer is proposed in this paper to model
the desired multiple-wise consistency. The consistency over a
local area means that each sample has strong correlation with its
neighbors. In other words, each sample’s labeling information
is partially embedded in its neighbors. Therefore, if we can de-
duce a sample’s label from its neighbors precisely, this sample
is regarded as locally consistent. The local learning regularizer
is developed in such manner. For a sample, instead of calcu-
lating the consistency with each of its neighbors individually,
the local learning regularizer considers the consistency with all
of its neighboring samples simultaneously. In this regularizer,
a local model is first trained for each sample with its neighbors
and then used to predict its consistent ranking score. Finally, by
minimizing the difference between the target ranking score and
this locally predicted one, the desired multiple-wise consistency
is guaranteed.

B. Likelihood—Ranking Distance

The likelihood is modeled via ranking distance which esti-
mates the disagreement between the ranking lists before and
after reranking. It is a crucial factor which significantly affects
reranking performance but has not been well studied yet.

Some existing visual reranking methods [4], [5] adopt the
point-wise ranking distance. It simply sums the individual
score difference for each sample in the two ranking score lists.
However, it fails to capture the disagreement between two
lists in terms of ranking accurately, as will be demonstrated in

Section V-A. The essential way to model ranking distance is the
list-wise method which takes the whole list as an “instance”.
However, this method is difficult to model and usually suffers
from heavy computational cost [6]. Since the ordinal infor-
mation in a ranking list can be completely expressed by the
ordering relationship on each sample pair, pair-wise ranking
distance is introduced for approximation. The well-known
Kendall’s tau [7] is such a pair-wise ranking distance which
counts how many pairs’ order is reversed after reranking. How-
ever, the reranking process will be computationally intractable
when Kendall’s tau distance is adopted.

To tackle above problems, a novel pair-wise ranking distance
is proposed in this paper. For each pair of samples, we not
only examine whether its order is preserved or reversed after
reranking, but also consider to what extent its order is preserved
or reversed. A term of preference strength is introduced to mea-
sure the degree of one sample ranked before the other. It is de-
fined as the ranking score difference between the two samples in
a pair to measure this pair’s order preservation degree. Penalty
is given to those pairs whose preference strength is changed
after reranking. The preference strength ranking distance is de-
fined as the sum of the penalties over all pairs. With this dis-
tance, Bayesian visual reranking can be solved efficiently with
a closed-form solution.

The main contributions introduced in this paper are summa-
rized as follows.

• We explicitly formulate visual reranking as a global opti-
mization problem within the Bayesian framework. Many
effective reranking methods can be developed under this
framework for different applications.

• To find out the best visual consistency modeling method,
three regularizers are considered and evaluated experimen-
tally.

• By investigating the effects of ranking distances in visual
reranking, preference strength ranking distance is proposed
from the pair-wise perspective with which Bayesian visual
reranking can be solved efficiently.

The rest of this paper is organized as follows. We briefly re-
view related works in Section II. In Section III, Bayesian visual
reranking is formulated and the general model is derived. Three
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visual consistency regularizers are introduced in Section IV.
In Section V, we discuss the ranking distance and propose
the preference strength distance. Solutions to Bayesian visual
reranking are given in Section VI. Different strategies for text
prior utilization are presented in Section VII. The connections
between Bayesian visual reranking, “learning to rank”, and
random walk-based methods are discussed in Section VIII.
Experimental results are given in Sections IX and X. The
conclusion is presented in Sections XI.

The preliminary version of this paper was presented at the
ACM Multimedia 2008 [8]. In this journal version, we have
enhancement in four aspects: 1) we evaluate local learning reg-
ularizer for modeling the visual consistency; 2) we evaluate six
reranking algorithms derived under Bayesian visual reranking
framework via comprehensive experiments; 3) we conduct
video search reranking experiments further on TRECVID 2005
dataset; and 4) we collect a Web image search dataset and
study the effectiveness of Bayesian visual reranking and other
reranking methods for Web image search scenarios.

II. RELATED WORK

Recently many methods [3]–[5], [9]–[14] have been pro-
posed for video/image search reranking, which can be divided
into three categories: classification-based, clustering-based,
and random walk-based.

The first category is classification-based [9]–[11]. It simpli-
fies reranking as a classification problem. There are normally
three steps: 1) select training samples from initial text-based
search results; 2) train a classifier with the selected samples;
and 3) reorder all samples according to predictions given by
the trained classifier. In the first step, pseudo relevance feed-
back (PRF) is often utilized. PRF is a concept introduced from
text retrieval. It assumes that a fraction of the top-ranked docu-
ments in the initial search results are pseudo-positive [15]. Al-
ternatively, [11] uses the query images or example video clips
as positive samples. The pseudo-negative samples are selected
from either the lowest ranked samples in initial result or the data-
base with the assumption that few samples in the database are
relevant [9], [11]. In step 2), different classifiers, such as SVM
[11], Boosting [10], and Ranking SVM [9], can be adopted. Al-
though the classifiers are effective, sufficient training data are
demanded to achieve satisfactory performance since a lot of pa-
rameters need to be estimated.

The second category is clustering-based. In [3], each sample
is given a soft pseudo label according to the initial text search
result, and then the Information Bottleneck principle [17] is
adopted to find optimal clustering which maximizes the mutual
information between the clusters and the labels. Reranked list is
achieved by ordering the clusters according to the cluster con-
ditional probability firstly and then ordering the samples within
a cluster based on their local feature density. This method
achieves good performance on the named-person queries as
shown in [3] while it is limited to those queries which have
significant duplicate characteristic.

The third category is random walk-based [4], [5], [12]. A
graph is constructed with the samples as the nodes and the
edges between them being weighted by visual similarity. Then,

reranking is formulated as random walk over the graph and the
ranking scores are propagated through the edges. To leverage
the text search result, a “dongle” node is attached to each
sample with the value fixed to the initial text ranking score. The
stationary probability of the random walk process is adopted
as the reranked score directly. In Section VIII-B, we will show
that this kind method can be unified into the proposed Bayesian
visual reranking framework.

There are also methods which incorporate auxiliary knowl-
edge, including face detection [18], query example [11], [19],
and concept detection [5], [20], [21], into visual reranking.
Though the incorporation of auxiliary knowledge leads to
the performance improvement, it is not a general treatment.
They suffer from either limited applicability to the specific
queries (face detection), the desire of the specific user inter-
faces (query example), or the limited detection performance
and small vocabulary size (concept detection). This paper
considers general reranking problem which does not assume
any auxiliary knowledge besides the visual information, and
thus, proposed reranking methods can be applied to many tasks
directly. Besides, there are also many papers that focus on im-
proving the diversity of the search result [22]–[24]. Diversity is
important in image search. Cox et al. [25] show that displaying
diverse images to users can speed up search time in CBIR.
However, the emphasis of this paper is on improving relevance.
A search result with high relevance can provide a good basis
for improving diversity.

III. BAYESIAN VISUAL RERANKING

Before formulating reranking, a few terms are defined.
Definition 1: A ranking score list (score list in brief),

is a vector of the ranking scores, which corre-
sponds to the sample set .

Definition 2: A ranking list is a permutation of sorted by
the ranking scores in descending order.

Definition 3: A reranking function is defined as

(1)

where is the initial ranking score list
given by the text-based search. Permuting the samples according
to this reranking function is called reranking.

The is the ranking score corresponding to sample . We
also use to denote its visual feature vector. In this paper,
the block-wise color moment feature is adopted. Reranking can
generally be regarded as a mapping from the initial ranking
list to the target ranking list. However, the ranking scores are
widely adopted to represent the ranking list for convenience. For
this reason, we define reranking on the score list instead of the
ranking list, to achieve more flexibility [3], [4].

The crucial problem in reranking is how to derive the optimal
function (1). This paper investigates the reranking problem from
the probabilistic perspective and derive an optimal reranking
function based on Bayesian analysis.

Supposing is a random variable, reranking can be regarded
as a process to derive the most probable score list given the ini-
tial one and the visual content of samples. From the probabilistic
perspective, reranking derives the optimum with a maximum
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posterior probability given the samples and the initial score
list :

(2)

According to Bayes’ formula, the posterior is proportional
to the product of the conditional prior probability and the
likelihood:

(3)

where is the conditional prior of the score list given
the visual content of samples. For instance, a small probability
should be assigned to a score list in which visually similar sam-
ples have dissimilar rank scores. The is the likelihood,
which expresses how probable the initial score list is given the
“true” ranking score list . As will be discussed later, the like-
lihood can be estimated based on the ranking distance which
represents the disagreement between and .

In most of video/image search systems, is obtained by using
textual information regardless of visual content. Therefore, the
conditional independency assumption of the visual information

and given the target score list can be made:

hence, . Substituting it into (3), we obtain

(4)

Replacing the posterior in (2) with (4), reranking is formulated
as maximizing the product of a conditional prior and a likeli-
hood, which is called Bayesian visual reranking.

Definition 4: Bayesian visual reranking is reranking using the
function

(5)

where is the initial ranking score list, and is the corre-
sponding samples set.

The conditional prior and the likelihood need to be estimated
to complete the reranking function. In the following sections,
we will show how to model these two terms.

A. Conditional Prior

In visual reranking, visually similar samples are expected to
have close ranking scores. This empirical prior knowledge can
be modeled as the conditional prior in Bayesian visual reranking
formulation. Specifically, we formulate the conditional prior as

(6)

where is a normalizing constant
and is the energy function defined over sample for
measuring the visual consistency on its neighboring local area.
The energy over all samples is . De-
tail discussion on will be given in Section IV.

B. Likelihood

As discussed before, the text-based search result is the basis
for reranking; therefore, the reranked results should preserve the
useful information contained in this text prior. This knowledge
is modeled in the likelihood term as

(7)

where is the normalizing constant, is a scaling parameter,
and is the ranking distance representing the disagree-
ment between the two score lists, which will be discussed in de-
tail in Section V. With (6) and (7), the Bayesian visual reranking
formulation in (5) is equivalent to minimizing the following en-
ergy function:

(8)

The two terms on the right-hand side of (8) correspond to the
conditional prior (6) and the likelihood (7), respectively. The
is a trade-off parameter.

IV. REGULARIZER

For the regularizer term , various methods can be
used to model . With visual consistency assumption,
the widely used regularizers in semi-supervised classification
and video annotation, Laplacian regularizer [27] and normalized
Laplacian regularizer [28], can be directly utilized.

In both regularizers, a graph is constructed with nodes
being the samples and similar samples are linked by edges. If
two samples and are linked, the weight on the edge
between them is calculated by using the Gaussian radial basis
function kernel , where is
the scaling parameter. Else, if two samples are not connected,

.

A. Laplacian Regularizer

In the Laplacian regularizer [27], is defined as

(9)

It approximates the visual consistency of from the pair-wise
perspective, i.e., accumulating the weighted score difference be-
tween and each of its neighbors .

With (9), the Laplacian regularizer is

(10)

where is the Laplacian matrix. The
and is the degree matrix

with and .
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B. Normalized Laplacian Regularizer

Normalized Laplacian regularizer [28] models in a
similar way as (9) with normalized ranking scores

(11)

Then, the normalized Laplacian regularizer is

(12)

where and is the unit matrix. The
and are the same as that in the Laplacian matrix.

From (9) and (11), we can see that both Laplacian and nor-
malized Laplacian regularizers approximate the ranking score
consistency for each sample pair-wisely and have less ability
to capture the multiple-wise ranking score consistency. As will
be discussed later, local learning regularizer models the mul-
tiple-wise consistency by formulating the score estimation as a
learning problem without heuristic assumptions.

C. Local Learning Regularizer

With the visual consistency assumption, the desired prop-
erty of is that: for each sample and its neighbors, their
ranking scores on should be smooth enough. Smoothness
is a term defined over the whole neighbor set, instead of over
each of the samples separately. However, in both and

, only the individual consistency between and each
of its neighbors is considered while the consistency within the
neighboring set is ignored.

To reveal the intrinsic multiple-wise consistency, we tackle
this problem from the local learning perspective. If a sample’s
ranking score can be estimated from its neighbors, the mul-
tiple-wise consistency is guaranteed. From this point of view, we
model the ranking score consistency from the machine learning
perspective. Specifically, for , we first learn the desirably con-
sistent score from its neighbors. By requiring the target be
close to , the multiple-wise consistency is guaranteed. The de-
tails are discussed as follows.

For each sample , a local model is trained with its
neighboring samples set , where
is the th nearest neighbor of and is the total number of
its neighbors. A ranking score can be predicted by , and
then the energy function is derived as the local model’s
prediction loss:

Then, the local learning regularizer is

(13)

The task of the local model is to predict ’s ranking
score from its neighbors accurately. Many approaches can be
used as the local model. A linear one is adopted in [29]. How-
ever, due to the complexity of the real-world images, it is hard
to predict the scores accurately by using simple linear model.
To handle this difficulty, we propose to use a local kernel model
by leveraging the strength of kernel methods. Since this is ap-
parently a regression problem, the kernel ridge regression statis-
tical model [30], which is well-known and simple to implement,
is adopted in this paper.

In kernel ridge regression, we define a kernel mapping func-
tion operating from input space to a kernel space

. The dependencies between and

its score vector are modeled as

(14)

The cost function is

(15)

where is a coefficient to balance the capacity and complexity
of this model.

Differentiating (15) w.r.t. and equating it to zero, we obtain

where denotes matrix . Then, for , the score pre-
dicted by its local model is

(16)

where , is a vector with
, and is a matrix with

. As for kernel-based
methods, we only need to define the kernel function without
defining explicitly. The Gaussian kernel is adopted in this
paper.

Substituting (16) into (13), we get the local learning
regularizer

(17)

The is the local learning regularizer
matrix and where equals the corresponding
element of if ; otherwise, .



644 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

TABLE I
TOY EXAMPLE FOR RANKING DISTANCE

V. RANKING DISTANCE

In this section, we will analyze the issues in existing ranking
distances and propose to measure the ranking distance from the
pair-wise perspective. A toy example is given for illustration,
which comprises five samples and four
ranking score lists , as shown in Table I. Sorting
the samples by their scores, the corresponding ranking lists are
derived from , , , and as

To measure the ranking distance between two score lists, one
intuitive idea is to take each score list as an “instance” and then
use list-wise approach. List-wise ranking distance has been ex-
ploited in “learning to rank”. For example, in [6], the distance of
two score lists is defined as the cross entropy between the two
distributions of permutations conditioned, respectively, on each
of the score lists. However, this list-wise approach is computa-
tionally intractable since the number of permutations is
for samples. Therefore, researchers resort to other simpler
ranking distance for efficiency.

A. Point-Wise Ranking Distance

The most direct and the simplest way to measure the ranking
distance between two score lists is to compute the individual
score difference of each sample, respectively, and then sum them
up, so-called point-wise approach, as shown in the following:

(18)

Such a point-wise approach has been applied in random walk
reranking with a slightly different form, as will be detailed in
Section VIII-B.

Point-wise ranking distance, however, fails to capture the
disagreement between the score lists in terms of ranking
order in some situations. Take the toy example in Table I for
illustration. Distances between and , , computed
via (18) are: , , and

. The is the largest, however,
in terms of ranking, the distance between and should be
the smallest since is identical with while different from
and .

As the ranking information can be represented entirely by the
pair-wise ordinal relations, the ranking distance between two
score lists can be computed from the pairs, so-called pair-wise
approach. Before further discussing pair-wise approaches, we
first define the notation .

Definition 5: is a relation on a pair if
, i.e., is ranked before in the ranking list derived

from .
All the pairs with satisfying compose set

. For any two samples and , either
or belongs to . Therefore, all the pair-wise ordinal

relations are reflected in .
The simplest pair-wise ranking distance can be defined as

(19)

where is a binary function defined as

.

The basic idea of (19) is to count the number of pairs which
disagree on the order relations in two lists. The widely used
Kendall’s tau distance [7] is defined in this way. Using (19),

, , and . It
really captures the differences between the ranking lists. How-
ever, the optimization problem of (8) with ranking distance (19)
is computationally intractable. Below we will design a new pair-
wise ranking distance with which (8) can be solvable.

B. Pair-Wise Ranking Distance

In reranking, not only the order relation but also the prefer-
ence strength, which means the score difference of the samples
in a pair, for pair , is indicative (e.g., given two
pairs, one comprising two tigers with different relevance levels,
and the other comprising a tiger and a stone). Obviously the
preference strength is different for these two pairs. Changing
the order of pair (tiger, tiger) is less sensitive than changing the
order of pair (tiger, stone). By utilizing such information, we de-
fine a new pair-wise ranking distance, called preference strength
distance

(20)

From (20), we can see that not only the ordinal relation
but also the change of preference strength is considered in
preference strength ranking distance. For a pair, the ordinal
relation is enhanced by a stricter criterion preference strength.
Only the preference strength is preserved; this sample pair
is regarded as ordering unchanged after reranking. With this
distance, Bayesian visual reranking can be solved efficiently
with closed-form solution.

VI. SOLUTIONS

With three regularizers, Laplacian (Lap) in (10), normalized
Laplacian (NLap) in (12) and local learning (Local) in (17),
and two ranking distances, point-wise (Point) in (18) and pair-
wise preference strength distance (Pair) in (20), six different
reranking methods can be derived by combining them according
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to the Bayesian visual reranking framework in (8). We denote
these six methods as Lap-Point, NLap-Point, Local-Point, Lap-
Pair, NLap-Pair, and Local-Pair, respectively. In this section, we
will give the solutions to these six methods. It is worth empha-
sizing that the Lap-Point is identical with GRF [27] and NLap-
Point is identical with LGC [28]. GRF and LGC are two repre-
sentative transductive learning methods in machine learning.

The three regularizers can be written in a unified form:

with certain matrix for corresponding regularizers. Therefore,
we only need to discuss the solutions with two different ranking
distances.

Proposition 1: The solution of Bayesian visual reranking
with point-wise distance (18) is

where is the identity matrix.
Proof: Replacing the distance term in (8) with the point-

wise distance, we get

The optimal solution is obtained by minimizing :

(21)

Differentiating (21) w.r.t. and then equating it to zero, it gives

The solutions for Lap-Point, NLap-Point, and Local-Point
can be derived by replacing with , , and ,
respectively.

Proposition 2: The solution of Bayesian visual reranking
with the proposed pair-wise distance (20) is

where is a Laplacian regularizer matrix defined over the
graph which has the same structure with but the weight
between nodes and is instead of . The

where is a vector with all elements equals 1 and
is an anti-symmetric matrix with .

Proof: Replacing the distance term in (8) with the prefer-
ence strength distance (20), the energy function is

The optimal solution is obtained by minimizing . Denote
, then we can get

(22)

Differentiating (22) w.r.t. and equating it to zero, it gives

(23)

The solutions for Lap-Pair, NorLap-Pair, and Local-Pair can be
derived by replacing with , and , respectively.

However, for Lap-Pair, since has a zero eigen-
value, the solution of (23) is non-unique. To obtain a unique
solution, we add a constrain by replacing the last row
of with to obtain and replacing the last
element of with zero to obtain , respectively. Then, the solu-
tion is .

VII. UTILIZATION OF TEXT-BASED SEARCH PRIOR

As aforementioned, the text-based search prior provides
information derived from the textual cues and thus should be
well utilized. In Bayesian visual reranking, this text prior is
involved as in the ranking distance term. Since reflects the
ranking scores of the samples, the most direct way is to use the
text-based search scores for it. However, in video search, the
performance of the text baseline is often poor and text scores
are mostly unreliable because of the inaccuracy and mismatch
of ASR and MT from the video. Besides, in some situations,
the text-based search scores are even unavailable. For example,
when images are downloaded from Web search engines, we
only know their ranks and cannot obtain their ranking scores.
Therefore, alternative strategies are proposed to set .

• Normalized Text Score (NTS)
The initial scores can be assigned by normalizing the text
scores into [0, 1] as follows:

where and are the maximal and minimal value
in .
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• Normalized Rank (NRK)
The normalized rank is widely used to estimate the
sample’s relevance probability [3], [9], [11], which will be
employed to assign the initial scores as

where is the rank of in text-based search result.
• Rank (RK)

Different from NRK, the rank can be used directly without
normalized by total sample number :

VIII. DISCUSSION

A. Connection to “Learning to Rank”

Firstly we define the ranking function analogical to reranking
function.

Definition 6: A ranking function is defined as

where is a set of features with being extracted
from the pair comprising the query and the sample , and
is the target ranking score list.

The goal of most “learning to rank” methods [6], [31] is to
learn a ranking function automatically from the training data:

(24)

and then predict the ranking score list of the samples under a
test query using the learned ranking function

where is the test feature set extracted from pairs of the test
query and samples, is the training data comprising

pre-labeled ranking lists for queries .
Reranking can be formulated as a learning to rank problem.

Firstly a fraction of the initial ranking score list is selected based
on some strategy; then the selected fractions are used to learn
an optimal ranking function; finally the reranked list can be
achieved using the learned ranking function. This is actually
the method used in [9], which adopts Ranking SVM to learn
a pair-wise ranking function.

The problem (24) can be regarded as inductive learning to
rank, which learns an explicit ranking function without utilizing
the unlabeled data. In reranking, however, an explicit ranking
function is not necessarily needed and what we desire is just the
reranked score list. A more effective way should be to deduce
the optimal ranking list from the training data directly without
explicitly learning a ranking function as

(25)

corresponding to transduction paradigm in machine learning.

Rewriting the reranking objectives (2) as

(26)

Since in reranking only one query is involved, the features
are extracted from the samples regardless of the query. Except
this, the objectives (25) and (26) have the same form. We can
see that reranking is actually transductive learning to rank with
only one training sample, i.e., the initial ranking score list. From
this perspective, the proposed Bayesian visual reranking can be
applied as transductive learning to rank as well. In addition, any
transductive learning to rank method which will be developed
in future can be used for reranking seamlessly.

B. Connection to Random Walk

The objective function of random walk-based reranking
methods [4] and [12] is derived as

(27)

from which we can see that random walk-based reranking
actually has a similar objective function as Bayesian visual
reranking. The two terms in the objective function (27) corre-
spond to the pair-wise visual consistency regularizer and the
normalized point-wise ranking distance, respectively.

IX. EXPERIMENTS ON VIDEO SEARCH DATASET

In this section, we evaluated the proposed Bayesian visual
reranking framework as well as the local learning regularizer
and the pair-wise preference strength ranking distance on
TRECVID which is a widely used video search benchmark.

A. Experimental Setting

We conducted experiments on automatic search task over the
TRECVID 2005–2007 video search benchmark dataset [32],
which consists of 508 videos with 143 392 shots. The data are
collected from English, Chinese, and Arabic news programs, ac-
companied with ASR and MT transcripts in English provided by
NIST [33]. The text-based search baseline we used in this paper
is based on the Okapi BM-25 formula [34] using ASR/MT tran-
scripts at shot level. For each of the 72 queries, 24 for each year,
at most 1400 video shots are returned as initial text-based search
result.

The low level visual feature we used in reranking are the 225-
dimensional block-wise color moments extracted over 5 5
fixed grid partitions with each block described by 9-dimensional
features [35]. When constructing the graph , each sample is
connected with its K-nearest neighbors. The RK strategy for
initial score is adopted and the parameters are globally set for
all methods to achieve their best performance.

The performance is measured by the widely used non-inter-
polated average precision (AP) [33] which averages the preci-
sion values obtained when each relevant image occurs. We av-
erage the APs over all the 24 queries in each year to get the mean
AP (MAP) for overall performance measurement.



TIAN et al.: BAYESIAN VISUAL RERANKING 647

Fig. 2. Performance of local-pair and the text search baseline across all queries of TRECVID 2005–2007.

TABLE II
MAP COMPARISON BETWEEN THE SIX METHODS UNDER

BAYESIAN VISUAL RERANKING FRAMEWORK

TABLE III
MAP COMPARISON BETWEEN LOCAL-PAIR AND OTHER RERANKING METHODS

B. Performance Comparison

1) Comparison for Regularizers and Ranking Distance: We
first compare the six methods derived under Bayesian visual
reranking framework. The results are summarized in Table II.

We analyze the results given in this table from two different
views. The first view is for regularizer, to find out the best way
for visual consistency modeling. We can see that, with the same
ranking distance, no matter point-wise or pair-wise, the Local-
algorithm outperforms the Lap- and NLap- algorithms on most
cases over the three years. The only exception is that Local-
point gives slightly worse performance than that of Lap-point
on TRECVID 2007. Generally speaking, the local learning reg-
ularizer is superior to both Laplacian and normalized Laplacian
regularizers since it takes the multiple-wise correlations of the
neighboring samples into consideration while the other two reg-
ularizers neglect it.

Then, we compare the two ranking distances with regularizers
verifying. From Table II, we can see that Lap-Pair outperforms
Lap-Point, NLap-Pair outperforms NLap-Point, and Local-Pair
outperforms Local-Point consistently over three years. From
this, we can conclude that pair-wise ranking distance performs
better than point-wise ranking distance.

2) Comparison Between Local-Pair and Other Reranking
Methods: From the above analyses, we already learned that
Local-Pair method performs the best among the six. To fur-
ther verify the effectiveness of Local-Pair, we need to com-

pare it with other existing methods beyond the six introduced in
this paper. Here, we compare Local-Pair with one typical clas-
sification-based method, SVM-PRF [11], and one well-known
random walk-based method, VisualRank [12].

The results are given in Table III. Local-Pair outperforms
both PRF-SVM and VisualRank consistently. For PRF-SVM,
we have tried several strategies for pseudo-positive/negative
sample selection and report the best one. However, due to
the poor performance of text baseline, too much noise is
contained in the pseudo-positive samples which lead unsatis-
factory reranking performance. For VisualRank, as discussed in
Section VIII-B, it can be unified into Bayesian visual reranking
framework with pair-wise regularizer and point-wise ranking
distance. Local-Pair outperforms it since more powerful regu-
larizer and ranking distance are utilized.

3) Performance of Local-Pair on Each Query: Besides the
overall performance, we also investigated the effectiveness of
Local-Pair over each query. Fig. 2 shows the performance of
Local-Pair across all the 72 queries over TRECVID 2005–2007.
We can see that most of the queries benefit from Local-Pair after
reranking and some queries show significant gain, such as Query
156: Find shots of tennis players on the court, Query 171: Find
shots of a goal being made in a soccer match, Query 195: Find
shots of one or more soccer goalposts, Query 196: Find shots
of scenes with snow, and Query 219: Find shots that contain
the Cook character in the Klokhuis series. In these queries, the
relevant samples share high visual similarity, which is coherent
with the visual consistency assumption. Remarkable improve-
ments on these queries also demonstrate the effectiveness of
the proposed visual consistency regularizer. On the other hand,
these queries have better text baselines than the others; there-
fore, more useful information is provided in the ranking distance
term.

We can also see that the AP of some queries slightly degrade
after reranking, such as Query 153: Find shots of Tony Blair,
Query 178: Find shots of US Vice President Dick Cheney, and
Query 200: Find shots of hands at a keyboard typing or using a
mouse. By further examining the data, we find that the relevant
samples in these queries vary largely and the used low level fea-
ture is insufficient to represent the complex high level seman-
tics. As a conclusion, Local-Pair presents stable performance
improvements on most queries with slight performance decrease
on a few of them. This phenomenon further demonstrates the su-
periority of the local learning regularizer and pair-wise ranking
distance.
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TABLE IV
MAP COMPARISON OF DIFFERENT �� STRATEGIES

TABLE V
P VALUES OF PAIRED T-TEST BETWEEN

LOCAL-PAIR AND OTHER METHODS

To verify whether the improvement of Local-Pair is statis-
tically significant, we further perform a statistical significance
test. Here we conduct paired T-test between Local-Pair and all
other methods. The p values are reported in Table V. The T-test
is conducted over 72 queries in TRECVID 2005–2007. From
this result, we can see that the improvement of Local-pair is sta-
tistically significant.

C. Text-Based Search Prior and Parameter Sensitivity

In this section, we will first analyze the influence of different
text prior utilization strategies presented in Section VII. Then,
we will investigate the sensitivity of Bayesian visual reranking
with respect to two important parameters, the for graph con-
struction and trade-off parameter .

1) Text Search Prior: We discussed three different strategies
for initial score list in Section VII. Different initial score strate-
gies will give different effects to the reranking process. We in-
vestigate NTS, NRK, and RK strategies by conducting experi-
ments with Local-Pair reranking method for illustration.

As shown in Table IV, RK and NRK, which only use the
rank instead of text scores, outperform NTS on TRECVID
2005–2007 consistently. We argue the reason could be that the
text-based search scores are not as reliable as rank. In addition,
RK performs better than NRK. The reason could be as follows.
In RK, for a pair of samples , its preference strength is

for all queries. In NRK, however, this preference strength
is normalized by the number of samples , i.e., ,
which is different among queries. Based on the statistics,
varies from 28 to 1400 in TRECVID 2005–2007. The optimal
parameters, such as the tradeoff parameter , vary according to
the preference strength, as can be observed in the optimization
objective. Since in our experiment the parameters are globally
selected, it is more appropriate to assign each query with equal
preference strength for pairs with the same rank differences.
Therefore, RK is much better in this situation.

2) Number of Nearest-Neighbors : Now we will ana-
lyze the sensitivity of parameters and in Local-Pair. The

Fig. 3. Performance of Local-Pair with different� .

RK is set as the default initial score strategy. The and
are evaluated over: ,

. When studying the sensi-
tivity of , we conduct experiments with fixed to certain
value and record the experimental results. Experiments are re-
peated until each has been tested. The evaluation procedure
for is similar with that for .

The is an important parameter when constructing the graph
. A larger ensures more relevant samples connected to each

other. However, the edges between relevant and irrelevant sam-
ples will be added too, which could degrade the performance
because the score consistency between relevant and irrelevant
samples is unnecessary. With a smaller , the “incorrect” edges
will be eliminated while some of the “correct” edges between
relevant samples are also missed, which will weaken the neces-
sary consistency.

Fig. 3 shows the MAP- curve. For TRECVID 2005, the
MAP increases dramatically when grows from 1 to 5. Then,
it fluctuates between 0.055 and 0.058 when grows from 10
to 200. For TRECVID 2006 and 2007, the MAPs increase with

growing and arrive at their peaks at around 50 and 5, respec-
tively. Then, the MAPs decrease gradually when is larger
than the peak point. Three datasets prefer different ’s. As an-
alyzed from the data, the average numbers of relevant samples
across queries are 41, 55, and 24 for TRECVID 2005–2007, re-
spectively. We can observe that setting around its average
relevant sample number can achieve a good, maybe not the best
but at least moderate, performance. This provides a rough guide-
line for setting empirically in practical applications.

3) Trade-Off Parameter : The trade-off parameter bal-
ances the effects of the two terms: consistency regularizer and
ranking distance. A larger indicates that more information is
preserved from the text search baseline into the reranked list.
When , the reranked list will be the same as the ini-
tial one if all the pairs are used. A small means that the vi-
sual consistency term plays a major role in reranking. When

, the result would be totally dominated by the visual con-
sistency regardless of the initial ranking score list at all. Gener-
ally speaking, the optimal value of is influenced by two fac-
tors, in direct proportion to the text-based search baseline and
in inverse proportion to the quality of visual consistency. The
text-based search baseline is already known for us, as illustrated
in Fig. 4. The visual consistency is hard to be measured numer-
ically. However, intuitively a query with more relevant samples
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Fig. 4. Performance of Local-Pair with different �.

may have higher visual consistency. Therefore, we can use the
average number of relevant samples per query to approximate
visual consistency.

As illustrated in Fig. 4, the performance varies with different
. The MAP increases with growing and arrives at its peak

at around on both TRECVID 2005 and 2006 while
on TRECVID 2007, the best is around 0.1. When increases
to 100, the reranking performance is already very close to the
baseline. For TRECVID 2005 and 2006, although the former
has a higher baseline, its average relevant sample is less than
the later. Therefore, the optimal on these two years is close.
TRECVID 2007 on one hand has the lowest text search base-
line. On the other hand, its average relevant samples per query
are obviously less than that of TRECVID 2005 and 2006. There-
fore, its optimal is larger than that for the other two years. It
can be concluded that the trade-off parameter can be set ac-
cording to the performance of text search baseline as well as the
number of relevant samples.

D. Complexity Analysis

For a query, images are returned by text-based search en-
gine, and the dimension of feature is . The time complex-
ities for Lap-Point/Pair, NLap-Point/Pair are .
The time complexities for Local-Point/Pair are

, where is the number of neighbors for
Local classifier. Since usually is much smaller than , the
complexities for Local-Point and Local-Pair can be regarded
as approximately, which is comparable to Lap-
Point/Pair and NLap-Point/Pair.

Besides theoretical analysis, we also test the time cost exper-
imentally for the best performed algorithm Local-Pair. It is im-
plemented using MATLAB and run on a server with 2.67-GHz
Intel Xeon cpu and 16 GB memory in single thread. is fixed to
30. By averaging the time cost of the reranking over all queries,
we obtain that Local-Pair finishes the reranking process within
about 1 s when . Reducing will largely decrease
the cost time. For , it only takes 0.1 s for reranking.
From the theoretical analysis and the statistical numbers dis-
cussed above, we can see that the efficiency of Local-Pair is ac-
ceptable for real applications.

Fig. 5. Example images for “Panda” with different relevance degrees.

X. EXPERIMENTS ON WEB IMAGE SEARCH DATASET

In Section IX, we have demonstrated the effectiveness of
Bayesian visual reranking in video search application. This
section will further verify its effectiveness in image search by
conducting experiments on a real Web image search dataset.

A. Web Image Search Dataset

This dataset consists of 73 340 images collected from three
popular commercial search engines, including Google,1 Live,2
and Yahoo.3 We selected 29 queries from a commercial image
search engine query log and popular tags from Flickr.4 These
queries cover a vast range of topics, including scene (sky,
winter), objects (funny dog, grape), named person (George W.
Bush), etc. For each query, at most top 1000 images returned by
each of the three search engines are collected. For each image,
its relevance degree with respect to the corresponding query
is judged by three participants, on four levels, “Excellent”,
“Good”, “Fair”, and “Irrelevant”. To have a vivid visualization
for the four relevance degrees, examples are given in Fig. 5 to
show their implications.

B. Experimental Setting

The text baselines are the initial search results returned by the
three search engines. The low level feature used for reranking
is also 225-dimensional block-wise color moments. For the
performance measurement, the AP used in the experiments
on TRECVID dataset cannot be adopted here. The reason is
that AP is only suitable for two relevance levels. However, we
have four relevance levels for this Web dataset. The normalized
discounted cumulated gain (NDCG) [36], which is a common
measure used in information retrieval when relevance levels are
more than two, is adopted here. For a given query, the NDCG
score at position in the ranking list is calculated as

where is the relevance degree of the th image in and is
a normalization constant which is chosen to guarantee that the
perfect ranking’s is 1. The normalization constant
is also called inverse perfect DCG, i.e., the inverse of DCG on
the perfect search result.

Since we cannot label the relevance for all the images in the
index of the search engine for a given query, it is difficult to
calculate Z. Here, we approximate the perfect search result by

1http://images.google.com/
2http://images.live.com/
3http://images.yahoo.com/
4http://www.flickr.com
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Fig. 6. MNDCG comparison for the six reranking methods on Live.

Fig. 7. MNDCG@40 comparison within different regularizers over the three
search engines. The Local kernel regularizer performs the best among the three
regularizers.

assuming that the top results returned by the three search en-
gines comprise most, if not all, of the relevant images. Based on
this strategy, it should be fair to compare the performance of the
three search engines. To evaluate the overall performance, we
average the NDCGs over all queries to obtain the mean NDCG
(MNDCG).

C. Performance Comparison

As we discussed in Section IX-B, Local learning regularizer
outperforms the other two regularizers and pair-wise ranking
distance outperforms point-wise distance. In this section, we
further verify this conclusion on Web image search reranking.
In addition, we also compare Local-Pair, with PRF-SVM and
VisualRank to show the superiority of this reranking algorithm.

1) Comparison for Different Regularizers: Fig. 6 gives the
reranking result on Live for illustration. We can see that Local-
Pair outperforms the other five algorithms.

By viewing Fig. 6 to compare the regularizers, we can find
that the Local-Pair outperforms Lap-Pair and NLap-Pair, and
Local-Point outperforms Lap-Point and NLap-Point. From this
observation, we get a rough conclusion that local learning reg-
ularizer is superior to the other two no matter which ranking
distance is adopted. To confirm this, we further conduct the ex-
periments on other two search engines and the results are given
in Fig. 7. Due to the space limitation, we only illustrate the
MNDCG@40 for comparison. We can clearly see that the local

Fig. 8. MNDCG@40 comparison between point-wise and pair-wise ranking
distances over the three search engines. The pair-wise ranking distance performs
better than the point-wise one.

Fig. 9. MNDCG@40 comparison between Local-Pair and other two reranking
methods as well as the text search baseline.

learning regularizer performs the best over all the three search
engines consistently.

2) Comparison for Different Ranking Distances: Now, turn
to view Fig. 6 from the ranking distance comparison perspec-
tive. It shows that no matter which regularizer is adopted, the
pair-wise ranking distance outperforms the point-wise one. In
other words, Lap/NLap/Local-Pair achieve higher performance
than Lap/NLap/Local-Point, respectively. To further confirm
this observation, experiments on other two search engines also
have been done and the results are given in Fig. 8. We can see
that pair-wise ranking distance shows its superiority steadily.
In summary, we can conclude that pair-wise ranking distance is
better for web image search reranking than point-wise ranking
distance.

As a conclusion, Bayesian visual reranking with pair-wise
ranking distance and the local learning regularizer, i.e., Local-
Pair, performs the best among the six variants. This finding is
consistent with the experiments on the TRECVID dataset.

3) Comparison Among Local-Pair, PRF-SVM, and Visual-
Rank: In the above, we have verified that Local-Pair also per-
forms the best among the six methods derived under Bayesian
visual reranking. In this section, we will further confirm the su-
periority of Local-Pair by comparing it with PRF-SVM and Vi-
sualRank. The performance in terms of MNDCG@40 of the
three reranking methods as well as the text baseline is illus-
trated in Fig. 9. We can see that PRF-SVM shows comparable
reranking performance with Local-Pair on Live but its perfor-
mance is not steady and its performance on Google and Yahoo
is even worse than the baseline. For VisualRank, slight improve-
ments are achieved over all three search engines. In contrast,
Local-Pair improves the baseline steadily and outperforms both
PRF-SVM and VisualRank. Up to now, we can get the conclu-
sion that Local-Pair is effective for both video and image search
reranking.
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XI. CONCLUSION

This paper proposes a general framework, Bayesian visual
reranking. It explicitly formulates visual reranking into a global
optimization problem from the Bayesian perspective. Under
this framework, a local learning-based visual consistency
regularizer and a pair-wise ranking distance are proposed to
solve the problems existing in current pair-wise regularizers
and point-wise ranking distance. The experiments conducted
on the TRECVID 2005–2007 and Web image search datasets
have demonstrated the effectiveness of the proposed Bayesian
visual reranking. This result encourages us to design more ef-
fective reranking methods under the Bayesian visual reranking
framework in future. For visual consistency term, we plan
to embed semantic similarity and introduce distance metric
learning to better model the visual consistency between images;
for ranking distance term, we will mine precise and efficient
list-wise ranking distances and incorporate them into Bayesian
visual reranking objective function.
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